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This paper discusses resonant cavities and their potential

sound pressure output when they are modulated hydrodynamically.

Rough calculations show that in the frequency range of 10 to

100 Hz source levels in excess of 200 dB re 1 pPa should be

achievable. Experimental data from three suboptimum devices

showed source levels of 182 dB at 16.6 and 50 Hz and 168 dB at

34.5 Hz. It is expected that with appropriate designs one can

achieve greater than 200 dB from 10 to 100 Hz with fairly
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small, lightweight devices. Further, with innovative designs
one should be able to obtain frequercy diversity and perhaps

broad bandwidth with a single device.

I. TINTRODUCTION

Sound generation is known to be inefficient when the radiating device is
small compared to a wavelength of the frequency one wishes to generate.
Production of high sound pressure levels at low frequency from devices small
compared to a wavelength requires large amounts nf acoustic power. Fo. example,
to produce 200 dB re 1 uPa at 10 Hz requires 1 kW of acoustic power and a volume

displacement of 104 cms.

With efficiencies of the order of 1% for many low-
?reqpency devices, the power amplifier requirement would be about 100 k¥. If
one could develop a suitable tow-powered source to derive power primarily from a
ship’s propulsion system, the power might be available without kaving to provide
extra generating equipment on-board the vessel. A vessel such as the U.S. Naval
Ship Stalwart (TAGOS-1) has a power plant that delivers 3,200 brake horsepower
or about 2 MW of power. This vessel would be capable of towing such a device
with about 5% of its power going to sound generation. A highly resonant device

might do even better. Here we will consider resonant air cavity devices and

give some results from theory and experiment.

II. SOME CONSIDERATIONS FOR PULSATING SPHERES AND RESONANT BUBBLES

From the previous paper in this meeting by Timme, Young, and Bluez let us
examine Fig. 1. At 10 Hz a spherical source driven uniformly over its area
would require 1 kW of acoustic power in the water to achieve a sound pressure

level of 200 dB re 1 yPa. The question now is whether or not that source level

L

T

ig ac
m{du:

-

this

reSoz
reduc
q'“es
neLes
shows |
of th
bubbl-
bubble

: fms cl'

;the Irs

;F%Fs.

sin'Fig

&
pulsat

 pressu

mainta

resona

0&88 :

III. «

- Ve
Researc
the res
sources

resaonarn




is achievable by causing the flow past a 10-Hz resonant bubble to sinusoidally
modulate the pressure field in the fluid surrounding the bubble. A candidate
gource design that we examined previously1 is shown schematically in Fig. 2. In
this case we attached a rubber membrane to a rigid hemisphere to produce the
resonant bubble or air cavity. The use of a rigid hemisphere was intended to
reduce multi-pole excitation of the resonant cavity. Our objective and approach
are shown in Fig. 3. Let us now examine the size and volume displacement
necessary to produce a 200-dB source level from a resonant bubble. Figure 4
shows Minnaert’s equation2 for a resonant gas bubble in water. The relationship
of the sound pressure produced in the water to the volume displacement of the
bubble is given in Fig. 5 for the case of an omnidirectional source. Assume the
bubble pulsates linearly with_a change of +5% in its resonant radius; i.e., the
fms change in the resonant radius is 3.5%. From this assumption we calculate
the rsm volume displacement 5V° as shown in Fig. 6. Combining equations in
Figs. 4, 5, and 6 we obtair the acoustic pressure referenced to 1 meter as shown
in Fig. 7. Here we see that a 10-Hz resonant bubble at a depth of 9.8 m
pulsating at 3.5% rms of the resonant radius (ro = 0.46 m) will give a sound
pressure level of 203 dB re 1 yPa at 1 m. To obtain 200 dB at 100 Hz
maintaining the 3.54 rms displacement criteria one would have to place the
resonant bubble at a depth of 62.3 m. Its radius at that depth would be

0.088 m.

ITI. SOME RESULTS FROM SUB-OPTIMUM DEVICES

We have tested three different prototype tow-powered sources at the Naval
Research Laboratory. Nonme of the prototypes is close to being optimum, however,
the results do show that producing fairly high sound pressure levels from such
sources is not that difficult. Figure 8 shows the concept for a 16.6-Hz

resonant source. The salient features here are the flow modulator, plastic




shroud, and rigid hemisphere. For this device and for a 50-Hz resonant device t?Bt
that we built, the stiffness and loss in the membrane as well as the design of devi
the flow modulators were factors in making the device suboptimum. Figures 9 and fTFq

10 show results from these two devices. Source levels of -~ 182 dB were obtained
at a tow speed of 1.85 km/hr (1 knot) for both of these devices. Lack of REFE

linearity with tow speed causes us some concern. Figure 11 shows the devices ld 1

m

were omnidirectional. No measurements of harmonic distortion were made. Figure

12 shows another concept for a tow-powered source that was tested. This device 2, )
was modeled by LT Semper for his Master’s thesis3 in mechanical engineering at 3’ P
the University of Central Florida. This device corrects a deficiency of the T
first devices by providing a variable speed motor to control the modulation 1

frequency instead of depending on tuning the flow modulator to rotate at the
broper resonant rate. We will not go into detail about the modeling but it
involves the elastic moduli of the elastomeric membrane, adds the radiation mass

in an ad hoc manner, and calculates the peak modulation pressure as a function

of tow speed. Figure 13 shows the calculated source levels as a function of the
peak modulation pressure. Since the model used is a linear one, we expect the
linear response shown here. For a peak modulation pressure of 0.1 psi theory
predicts a sound pressure level of 168 dB at 34.5 Hz. Figure 14 shows the
experimental results which agree well at resonance with the theory after

selection of appropriate parameters to put into the theory.

IV. DISCUSSION
The results presented here were meant to stimulate thought on tow- or flow-
powered devices. We have shown with very crude devices that source levels of

170 to 190 dB are easily obtainable. Our belief is that source levels greater




than 200 dB can be obtained from 10 to 100 Hz with rather small, lightweight
devices and that with innovative design we can develop devices that have

frequency diversity and maybe even fairly broad bandwidth.
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FIGURE CAPTIONS

Source level and acoustic power radiated from a harmonically pulsating
sphere with ka << 1.

Tow-powered, louw-frequency sound source.

Objective and approach in creating a tow-powered, low-frequency sound
source.

Minnaert’s equation for a resonant bubble in water.

Sound pressure referenced back to 1 m from an omnidirectional source
with volume displacement 6V.

Yolume displacement for a resonant bubble with 3.5% rms oscillation
about T,

Sound pressure level re 1uPa for a 10-Hz resonant bubble at 9.8-m
depth pulsating 3.5% r, rms (ro = 0.46m).

Flow modulator.

Sound pressure level vs tow speed.

Sound pressure level vs tow speed

Directivity of 16.6 and 50 Hz sources.

Tow-powered sound source.

Effects of the magnitude of forcing.

Sound pressure level vs frequency.
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37 Ph

f r = |—

° larp
f° = resonant frequency
r = radius at resonance
7 = adiabatic constant
Ph = hydrostatic pressure
p = demnsity
£ h + 9.8

oTo=3.26{ 9.8

h = water depth in meters

T, in meters




€
It

angular frequency

density

©
N

0V = volume displacement




Volume of resonant bubble

_4 3
vo =3 T7T,

4 3 .13

OV) g g=57 [(1.035)3- 1]s3
= 0.457 o

o




4.95 x 10%

Ipllm = f
o

h o+ 9. 3/2
(55

h + 9.8
SPL = 213.9 -20 log fo + 30 log [—_%TE_—J dB re 1 pPa

For fo =10 Hz and h = 8.8 n

SPL = 203 dB
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